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Categories

A category K consists of
a class of objects Obj(K),

a class of arrows
⋃

A,B∈Obj(K) K(A,B), where f ∈ K(A,B) means A
is the domain of f and B is the codomain of f ,
a partial associative composition operation ◦ defined on arrows,
where f ◦ g is defined⇐⇒ the domain of g coincides with the
domain of f .

Furthermore, for each A ∈ Obj(K) there is an identity idA ∈ K(A,A)
satisfying idA ◦ g = g and f ◦ idA = f for f ∈ K(A,X ), g ∈ K(Y ,A),
X ,Y ∈ Obj(K).
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Definition
A sequence in K is a functor ~x from ω into K.

X0 X1 X2 · · ·
x1

0 x2
1 x3

2

Definition
Let ~x be a sequence in K. The colimit of ~x is a pair 〈X , {x∞n }n∈N〉 with
x∞n : Xn → X satisfying:

1 x∞n = x∞m ◦ xm
n for every n < m.

2 If 〈Y , {y∞n }n∈N〉 with y∞n : Xn → Y satisfies y∞n = y∞m ◦ ym
n for

every n < m then there is a unique arrow f : X → Y satisfying
f ◦ x∞n = y∞n for every n ∈ N.
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The Banach-Mazur game

Definition
The Banach-Mazur game BM (K) played on K is described as follows.

There are two players: Eve and Odd.
Eve starts by choosing A0 ∈ Obj(K).
Then Odd chooses A1 ∈ Obj(K) together with a K-arrow a1

0 : A0 → A1.
More generally, after Odd’s move finishing with an object A2k−1, Eve
chooses A2k ∈ Obj(K) together with a K-arrow a2k

2k−1 : A2k−1 → A2k .
Next, Odd chooses A2k+1 ∈ Obj(K) together with a K-arrow
a2k+1

2k : A2k → A2k+1. And so on...
The result of a play is a sequence ~a:

A0 A1 · · · A2k−1 A2k · · ·
a1

0 a2k
2k−1
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Generic objects

General assumption: K ⊆ L.

Definition
We say that U ∈ Obj(L) is K-generic if Odd has a strategy in the
Banach-Mazur game BM (K) such that the colimit of the resulting
sequence ~a is always isomorphic to U, no matter how Eve plays.

Proposition
A K-generic object, if exists, is unique up to isomorphism.

Proof.
The rules for Eve and Odd are the same.
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Example
Let K be the category of all finite linearly ordered sets with
embeddings.
Then 〈Q, <〉 is K-generic.

Example
Let K be the category of all finite graphs with embeddings.
Then the Rado graph R = 〈N,ER〉 is K-generic, where k < n are
adjacent if and only if the k th digit in the binary expansion of n is one.

Example
Let K be the category of all finite acyclic graphs with embeddings.
Then the countable everywhere infinitely branching tree is K-generic.
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Theorem (Urysohn, 1927)
There exists a unique Polish metric space U with the following
property:
(E) For every finite metric spaces A ⊆ B, every isometric embedding

e : A→ U can be extended to an isometric embedding f : B → U.

Furthermore:
Every separable metric space embeds into U.
Every isometry between finite subsets of U extends to a bijective
isometry of U.

Theorem
Let Mfin be the category of finite metric spaces with isometric
embeddings.
Then the Urysohn space U is Mfin-generic.
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The amalgamation property

Definition
We say that K has amalgamations at Z ∈ Obj(K) if for every K-arrows
f : Z → X , g : Z → Y there exist K-arrows f ′ : X →W , g′ : Y →W
such that f ′ ◦ f = g′ ◦ g.

Y W

Z X

g

f

g f ′

We say that K has the amalgamation property (AP) if it has
amalgamations at every Z ∈ Obj(K).
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Theorem (Universality)
Assume K has the AP and U is K-generic.
Then for every X = lim~x, where ~x is a sequence in K, there exists an
arrow

e : X → U.

Example
Let K be the category of all finite linear graphs with embeddings. Then
〈Z,E〉 is K-generic, where xEy ⇐⇒ |x − y | = 1.
On the other hand, 〈Z,E〉 ⊕ 〈Z,E〉 6↪→ 〈Z,E〉.
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Fraı̈ssé sequences

Definition
A Fraı̈ssé sequence in K is a sequence ~u : ω → K satisfying the
following conditions:

For every A ∈ Obj(K) there is n such that K(A,Un) 6= ∅.
For every n ∈ ω, for every K-arrow f : Un → Y there are m > n and
a K-arrow g : Y → Um such that g ◦ f = um

n .

U0 · · · Un Um · · ·

Y
f

um
n

g
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Theorem 1
Let ~u be a Fraı̈ssé sequence in K and let U = lim~u. Then U is
K-generic.

Proof.

· · · Un0 Un1 Un2 · · ·

A0 A2 A4 A6
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Fraı̈ssé categories

Definition
A Fraı̈ssé category is a countable category K satisfying:

1 For every X ,Y ∈ Obj(K) there is U ∈ Obj(K) such that

K(X ,U) 6= ∅ 6= K(Y ,U).

2 K has the amalgamation property.
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Theorem 2
Assume K ⊆ L is such that every sequence in K converges in L and K
is a Fraı̈ssé category. Then there exists a K-generic object in L.

Proof.
Let P be the poset of all finite sequences in K, i.e., covariant functors
from some n ∈ ω into K. The ordering is end-extension.
Let

D = {Dn,f : n ∈ ω, f ∈ K} ∪ {En,A : n ∈ ω, X ∈ Obj(K)},

where

Dn,f = {~x ∈ P : Xn = dom(f ) =⇒ (∃m > n)(∃g) g ◦ f = xm
n },

En,A = {~x ∈ P : (∃m > n) K(A,Xm) 6= ∅}.

Let ~u be the sequence coming from a D-generic filter/ideal. Then ~u is
Fraı̈ssé, therefore U = lim~u is K-generic.
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is a Fraı̈ssé category. Then there exists a K-generic object in L.

Proof.
Let P be the poset of all finite sequences in K, i.e., covariant functors
from some n ∈ ω into K. The ordering is end-extension.
Let

D = {Dn,f : n ∈ ω, f ∈ K} ∪ {En,A : n ∈ ω, X ∈ Obj(K)},

where

Dn,f = {~x ∈ P : Xn = dom(f ) =⇒ (∃m > n)(∃g) g ◦ f = xm
n },

En,A = {~x ∈ P : (∃m > n) K(A,Xm) 6= ∅}.

Let ~u be the sequence coming from a D-generic filter/ideal. Then ~u is
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is a Fraı̈ssé category. Then there exists a K-generic object in L.

Proof.
Let P be the poset of all finite sequences in K, i.e., covariant functors
from some n ∈ ω into K. The ordering is end-extension.
Let

D = {Dn,f : n ∈ ω, f ∈ K} ∪ {En,A : n ∈ ω, X ∈ Obj(K)},

where

Dn,f = {~x ∈ P : Xn = dom(f ) =⇒ (∃m > n)(∃g) g ◦ f = xm
n },

En,A = {~x ∈ P : (∃m > n) K(A,Xm) 6= ∅}.

Let ~u be the sequence coming from a D-generic filter/ideal. Then ~u is
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Fraı̈ssé theory

Definition
A Fraı̈ssé class is a class of finite models of a fixed countable
language satisfying:

(H) For every A ∈ F , every model isomorphic to a submodel of A
is in F .
(JEP) Every two models from F embed into a single model from
F .
(AP) F has the amalgamation property for embeddings.
(CMT) F has countably many isomorphic types.

W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 16 / 27



Theorem (Fraı̈ssé, 1954)
Let F be a Fraı̈ssé class. Then there exists a unique, up to
isomorphism, countable model U such that

1 F consists of all isomorphic types of finite submodels of U,
2 every isomorphism of finite submodels of U extends to an

automorphism of U (in other words, U is ultra-homogeneous).
Conversely, if U is a countable homogeneous model then the class of
all models isomorphic to finite submodels of U is Fraı̈ssé.
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More examples
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The Cantor set

Fix a compact 0-dimensional space K . Define the category KK as
follows.
The objects are continuous mappings f : K → S with S finite.
An arrow from f : K → S to g : K → T is a surjection p : T → S
satisfying p ◦ g = f .

T

K

S

p

g

f
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W.Kubiś (http://www.math.cas.cz/kubis/) Generic objects 26.01–2.02.2019 19 / 27



The Cantor set

Fix a compact 0-dimensional space K . Define the category KK as
follows.
The objects are continuous mappings f : K → S with S finite.

An arrow from f : K → S to g : K → T is a surjection p : T → S
satisfying p ◦ g = f .

T

K

S

p

g

f
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Let LK be the category whose objects are continuous mappings
f : K → X with X metrizable compact 0-dimensional.

An LK -arrow
from f : K → X to g : K → Y is a continuous surjection p : Y → X
satisfying p ◦ g = f .

Y

K

X

p

g

f
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Theorem (Bielas, Walczyńska, K.)
Let 2ω denote the Cantor set. A continuous mapping η : K → 2ω is
KK -generic⇐⇒ η is a topological embedding and η[K ] is nowhere
dense in 2ω.

Corollary (Knaster & Reichbach 1953)
Let h : A→ B be a homeomorphism between closed nowhere dense
subsets of 2ω. Then there exists a homeomorphism H : 2ω → 2ω such
that

H � A = h.
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The Gurarii space

Theorem (Gurarii 1966)
There exists a separable Banach space G with the following property.
(G) For every ε > 0, for every finite-dimensional normed spaces

E ⊆ F, for every linear isometric embedding e : E → G there
exists a linear ε-isometric embedding f : F → G such that
f � E = e.

Theorem (Lusky 1976)
Among separable spaces, property (G) determines the space G
uniquely up to linear isometries.

Elementary proof: Solecki & K. 2013.
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Theorem
The Gurarii space G is generic over the category Bfd of
finite-dimensional normed spaces with linear isometric embeddings.

Key Lemma (Solecki & K.)
Let X , Y be finite-dimensional normed spaces, let f : X → Y be an
ε-isometry with 0 < ε < 1. Then there exist a finite-dimensional
normed space Z and isometric embeddings i : X → Z , j : Y → Z such
that

‖i − j ◦ f‖ 6 ε.
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The pseudo-arc

Let I be the category of all continuous surjections from the unit interval
[0,1] onto itself.

Let C be the category of all chainable continua.

Theorem
The pseudo-arc is I-generic.
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